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A microprocessor’s architecture defines the instruction set and programmer’s model for 
any processor that will be based on that architecture. Different processor implementations 
may be built to comply with the architecture. Each processor may vary in performance 
and features, and be optimized to target different applications. 
 
Future processors, based on the new ARMv6 architecture will provide developers of 
embedded systems with higher levels of system performance, whilst maintaining 
excellent power and area efficiency. 

The Evolution of the ARM Architecture 
The ARM architecture has evolved steadily to respond to the changing needs of ARM’s 
partners, and of the design community in general. 
 
At each major revision of the ARM architecture, significant features have been added. 
Between major architecture revisions, new features have been included as variants on the 
architectures. The key letters appended to the core names indicate specific architecture 
enhancements within each implementation. 
 

• V3 introduced 32-bit addressing, and architecture variants: 
o T – Thumb state: 16-bit instruction execution. 
o M – long multiply support (32 x 32 => 64 or 32 x 32 + 64 => 64). This 

feature became standard in architecture V4 onwards. 
• V4 added halfword load and store. 
• V5 improved ARM and Thumb interworking, count leading-zeroes (CLZ) 

instruction, and architecture variants: 
o E – enhanced DSP instructions including saturated arithmetic operations 

and 16-bit multiply operations 
o J – support for new Java state, offering hardware and optimized software 

acceleration of bytecode execution. 
 
All of the ‘TEJ’ enhancements above become part of the new ARMv6 architecture 
specification. 
 
In order to maintain backwards compatibility, ARMv6 also includes ARMv5 compliant 
memory management and exception handling. This enables the significant third-party 
developer community to exploit existing development effort, and supports the reuse of 
existing software and design experience. 
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The introduction of a new architecture does not replace existing architectures, or make 
them redundant. Where the provisions of ARMv4 or ARMv5 meet market needs, new 
cores and derivative products will continue to be based on these architectures, whilst 
tracking technology and process trends. For example, the ARM7TDMI core based on the 
V4T architecture is still being ‘designed-in’ to many new products, where a performance 
level of 100MIPS or so is adequate. Processors based on the ARMv5 architecture 
continue in development. 
 
The ARM architecture will of course continue to evolve with appropriate enhancements 
in the future.  
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Figure 1.  ARM Architecture Revisions 
 
Implementations of the ARMv6 architecture are primarily driven by ARM’s partner 
development activity. The first ARM implementations of ARMv6 are underway; more 
information will be released with the product rollout during 2002. 

Driving Architecture Development 
Next generation architectures have been driven by the needs of emerging products and 
evolving markets. The key design constraints are predictable. The function, performance, 
speed, power, area and cost parameters must be balanced to meet the requirements of 
each application. ARMv6 offers better ways of optimizing these constraints across a 
number of vertical market segments. 
 
Delivering leading performance/power (MIPS/Watt) has been fundamental to ARM’s 
success in the past, and will continue to be a critical benchmark for future applications. 
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Functionality is growing dramatically as computing and communications continue to 
converge in many consumer products. Increasingly, consumers expect features such as 
advanced user interfaces, multimedia capability and improved product quality. ARMv6 
will enable more efficient support for all of these new features and technologies across a 
number of market segments. 
 
A number of specific market drivers for ARMv6 have been identified. ARMv6 will 
benefit developers targeting wireless, networking, automotive and consumer 
entertainment markets. ARM has worked with architecture licensees and key partners 
such as Intel, Microsoft, Symbian and Texas Instruments in specifying the requirements 
for ARMv6. 
 
As well as taking into account changing market requirements, key improvements in 
software, synthesis and process technology also influence the architecture specification. 
The development of ARMv6 will enable partners to better exploit these, and other 
technological advances. 

Key ARMv6 Improvements  
In developing the ARMv6 architecture, effort has been focused on five key areas: 

Memory Management 
System design and performance is heavily affected by the way that memory is managed.  
The memory management architectural enhancements improve the overall processor 
performance significantly – especially for platform-type applications where operating 
systems need to manage frequent task changes. With the changes in ARMv6, average 
instruction fetch and data latency is greatly reduced; the processor has to spend less time 
waiting for instructions or data cache misses to be loaded. The memory management 
improvements will provide a boost in overall system performance by as much as 30%. 
 
In addition, the memory management enhancements will enable more efficient bus usage. 
Less bus activity will yield significant power savings as a result of reduced memory 
access. 

Multiprocessing 
Application convergence is driving system implementations towards the need for 
multiprocessor systems. Wireless platforms, especially for 2.5G and 3G, are typical 
applications that demand integration between ARM processors, ARM and DSPs, or other 
application accelerators. 
 
Multiprocessor systems share data efficiently by sharing memory. New ARMv6 
capabilities in data sharing and synchronization will make it easier to implement 
multiprocessor systems, as well as improving their performance. New instructions enable 
more complex synchronization schemes, greatly improving system efficiency.  
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Multimedia Support 
Single Instruction Multiple Data (SIMD) capabilities enable more efficient software 
implementation of high-performance media applications such as audio and video 
encoders. Over sixty SIMD instructions are added to the ARMv6 Instruction Set 
Architecture (ISA). 
 
Adding the SIMD instructions will provide performance improvements of between 2x 
and 4x, depending on the multimedia application. The SIMD capabilities will enable 
developers to implement high-end features such as video codecs, speaker-independent 
voice recognition and 3D graphics, especially relevant for next generation wireless 
applications. 

Data Handling 
A system’s endianism refers to the way data is referenced and stored in a processor’s 
memory.  
 
With increasing system on a chip (SoC) integration, a single chip is more likely to 
contain little-endian OS environments and interfaces (such as USB, PCI), but with big-
endian data (TCP/IP packets, MPEG streams). With ARMv6, support for mixed-endian 
systems has been improved. As a result, handling data in mixed-endian systems under 
ARMv6 is far more efficient. 
 
Unaligned data is data that is not aligned to its natural size boundary. For example, within 
DSP applications there is sometimes a requirement to treat words with half-word data 
alignment. For a processor to handle this situation efficiently requires that it be able to 
load a word aligned to any half-word boundary.  
 
Current versions of the architecture require a number of instructions to manage unaligned 
data. ARMv6 compliant architectures will manage unaligned data more efficiently in 
hardware. In algorithms that rely heavily on DSP operations with unaligned data, ARMv6 
implementations will have a performance advantage and may also benefit from reduced 
code size. Unaligned support also makes it more efficient for ARM to emulate other 
processors, such as Motorola’s 68000 family. 
 
Similar to recent ARMv5 implementations such as ARM10 and XScale1™, ARMv6 is 
based on a 32-bit processor. ARMv6 will support implementations based on bus widths 
of 64-bits and above - ARM10 and XScale support 64-bit buses today. This provides bus 
throughput equivalent to, or even better than a 64-bit machine, but without the power and 
area overhead of a full 64-bit CPU. 

Exceptions and Interrupts 
For implementations targeted at real-time systems, efficient handling of interrupts can be 
critical. Examples include systems such as hard disk controllers, and engine management 

                                                 
1 XScale is a registered trademark of Intel Corporation. 
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applications, where the consequences can be severe if a critical interrupt does not get 
serviced in time. More efficient handling of exception and interrupt conditions also 
improve overall system performance. This is especially important in reducing system 
latency. 
 
In ARMv6, new instructions have been added to the ISA to improve the implementation 
of interrupts and exceptions. These provide the ability to efficiently nest exception 
handling onto a different privileged mode. 
 
Each of these architectural advances is described in more detail in the following sections. 

Programmer’s Model 
Six new status bits have been added to the programmer’s model. Four bits are associated 
with providing “greater than or equal to” status for the new multimedia instructions. The 
E-bit indicates the current load/store endian setting for the core, and the A-bit is used to 
mask imprecise data aborts. 

• GE[3:0] bits 
o SIMD status bits - greater than or equal to for each 8/16-bit slice 

• E-bit 
o Indicates the current load/store endian setting of the core 
o Can be set/cleared with the SETEND instruction  

• A-bit 
o Indicates if imprecise data abort exceptions are masked 

Compatibility 
ARMv6 maintains 100% backward compatibility at the binary level for operating 
systems and applications. The ARMv6 architecture requires that all Thumb and ‘E’ 
instructions be implemented for backwards compatibility with ARMv5. 
 
Some of the newly introduced ARMv6 instructions also have Thumb equivalents – for 
example the new ‘REV*’ instructions. The BXJ instruction is also a requirement within 
ARMv6 for consistent Java support – regardless of whether Jazelle technology is 
implemented or not. 

Improved Memory Management 
Memory management is primarily concerned with two issues. First, the translation of 
virtual addresses into physical addresses within a system. Second, ensuring appropriate 
levels of protection between different processes and tasks. 
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The ARM architecture is a load-store architecture, where the ARM core instructions can 
only operate on data in registers that form part of the core. Load and store instructions are 
used to transfer data to and from this register file. 
 
A multi-level memory system is part of normal system design hierarchy. Closer coupled 
memory systems tend to run faster, with level 1 memory systems ideally having no wait 
states. In practical terms, this limits the size of memories that can be supported at core 
clock speeds. Many high performance systems are now supporting additional (larger) L2 
caches with some wait states, but less latency than if the memory was located off-chip. 
L3 cache may be provided as fast off-chip SRAM, with "normal" DRAM a level behind 
that.  
 
ARM first introduced cores (e.g. ARM7TDMI), then developed and offered cached cores 
with MMU's (e.g. ARM720/920). ARMv6 is a logical progression on this - providing a 
complete definition of the L1 memory system, and to a lesser extent how memory levels 
beyond this need to behave for overall system correctness.  
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Figure 2. ARMv6 Memory Model 

 
 
L1 memory will run synchronized to the core. Where different clock domains are 
introduced into a design, memory synchronization becomes dependent on the 
implementation.  
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ARM Virtual Memory System Architecture 
The ARM Virtual Memory System Architecture v6 (VMSAv6) fully specifies the new 
Level 1 cache system – that most tightly coupled to the processor. The VMSA also 
specifies a Tightly-Coupled Memory (TCM) and DMA system. The architecture permits 
a range of implementations of these systems, with software-visible configuration registers 
to allow identification of the resources that exist.  V6 supports hierarchy and memory 
ordering rules to ensure system correctness for additional levels of cache in both single 
processor and multiprocessor systems. Memory ordering rules define the architecture, 
without constraining the implementation. 
 
Version 6 now supports physically tagged caches, reducing software overhead on context 
switches. This can save up to 20% of the processor utilization by eliminating the need to 
perform cache flushing by the OS. 

ARM v6 L1 Cache 
The L1 cache is architected to reduce the requirement for cache clean and invalidation on 
a context switch. The cache may be organized as a Harvard system with separate 
instruction and data caches, or as a single unified von Neumann cache. The TCM is a 
physically-addressed area of scratchpad memory, which is implemented alongside the L1 
cache. Similarly, the TCM can be organized as a Harvard or von Neumann system. The 
L1 DMA subsystem is designed to allow background transfers to and from the TCM. 

Page Table Formats 
Page table formats have been revised in ARMv6. Figure 3 illustrates the new first level 
page table format. 
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Figure 3. ARMv6 First Level Page Table Format 
 
 

The XP bit in Coprocessor 15 is used to enable this format, otherwise an ARMv5 legacy 
mode is invoked for backwards compatibility. 
New features include: 

• an execute never bit (XN) 
• a “not Global” (nG) bit for address matching 
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Application Space Identifier - or ASID - support is another key feature in this area. When 
the nG-bit is set, address translation uses the virtual address and ASID for translation 
matching. This provides a significant saving in software overhead on context switches, 
avoiding the need to flush on-chip translation buffers in most cases. The result is 
improved performance. The architecture also supports its use in task-aware debugging. 
The ASID forms part of a process ID that can be used in task aware debugging. 
Type extension, shared, and access permission bits are used to provide all the attributes 
necessary for the ARMv6 memory model. A P-bit, which is compatible with the 
mechanism already available on Intel’s XScaleTM product, has been added for memory 
protection. 

Additional Translation Table Base Register 
To improve page table handling, a second translation table base register has been added; 
CP15 now supports TTBR0 and TTBR1. A control register is used to program N, the 
number of leading zeroes (most significant address bits) in virtual addresses that use 
TTBR0; 0 < N < 7. The device resets with N equal to zero, meaning all virtual addresses 
use TTBR0, otherwise the address space 0-232-N will use TTBR0 and other addresses will 
use TTBR1. The size of the first level page table required for TTBR0 will vary from 128 
bytes to 16kB depending on the value of N, offering additional scope for memory savings 
in resource critical systems, particularly where multiple tables are held in memory and 
swapped on a context switch by updating the translation base register. 

Multiprocessing 
While many ARM processors today are used in isolation, or with simple communications 
links to another resource with its own memory, there are increasing requirements for 
unified memory models, and closer coupling of processors in general.  
 
Systems consisting of multiple processors – either multiple ARM processors or a mixture 
of ARMs and DSPs, are becoming more common. Improvements to the ARMv6 memory 
management unit (MMU) are important in ensuring that processors get predictable and 
consistent (coherent) views of memory when it is shared between multiple processors. 
 
Improvements include defining the level1 memory system, and the memory order model  
- how loads and stores to memory relate to each other. 
 
As well as memory improvements to facilitate multiprocessing, Load and Store Exclusive 
instructions have been added in version 6 to support semaphores in multiprocessor 
systems (used to synchronise tasks). These instructions provide a more powerful and 
flexible mechanism over the current swap instructions.  

• LDREX{<cond>}   <Rd>, [<Rn>] 
This performs a load, then sets a monitor to “watch” the address 
• STREX {<cond>}   <Rd>, <Rm>, [<Rn>] 
This performs a store and returns “success” in Rd if no intervening access 
detected by the monitor.  
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Exceptions and Interrupts 
The desire to implement more efficient processing of exception and interrupt conditions 
has led to several architectural enhancements in ARMv6. A low interrupt latency mode 
allows implementations to modify or switch off features. This is enabled by the FI bit in 
CP15 register 1 (the CPU control and configuration register). This facility enables 
designers to make performance versus latency tradeoffs, and support both in the design. 
For example, Load Multiple or Store Multiple instructions (LDM/STM) can be made 
interruptible where low latency is important. Normally, these instructions would run to 
completion. 
 
ARMv6 provides for vectored interrupt support. The Vectored Interrupt Controller (VIC) 
is enabled by the VE bit in CP15 register 1. The VE bit is used to enable returning 
vectored interrupts directly to the core. VIC support is currently provided through an 
external system peripheral. This requires an IRQ or FIQ system interrupt, and then the 
interrupt handler needs to perform a memory mapped read of a register for the vector 
address. 
 
Imprecise external aborts are supported in ARMv6. The A-bit added to the program 
status register (CPSR), provides an abort mask for this - like the I and F bit masks for 
IRQ and FIQ. 

Stack Handling and Mode Change support 
New stack handling capabilities in ARMv6 avoid the need for multiple stacks. The 
ARMv6 register model supports separate stacks in the different modes. Many operating 
systems like to nest all their state saving and restoring onto a single stack. Version 6 
makes this much more efficient. The stack handling capabilities are based on new cross-
mode state-saving instructions: 
 

• SRS #Mode - Save Return State onto stack belonging to ‘Mode’ 
• RFE - Return From Exception 

 
The SRS instruction allows register 14 and the SPSR (Saved Processor Status Register) 
for the current mode to be saved to a stack in a different mode. The RFE instruction loads 
the PC and CPSR (Current Processor Status Register) from the saved state. 
 
New instructions support fast mode changes in privileged modes.  Instructions cannot be 
used in user mode for security reasons. 
 

• CPSID #Mode (and disable interrupts) 
• CPSIE #Mode (and enable interrupts) 

 
The CPS instructions allow software to move efficiently to a different mode while 
enabling or disabling interrupts. 
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Table 1a and 1b show code extracts, including entry code and exit code, comparing stack 
handling with SRS/CPS/RFE usage in ARMv6 with ARMv5. The two sections of code 
are exact equivalents for the context: 

• An FIQ entry - FIQ2 - from a VIC is to be processed in ABORT mode (there is a 
higher priority FIQ - FIQ1 - which uses FIQ mode directly) 

• In ARMv5, the handler needs to use the FIQ_stack as a scratchpad for R0-R3 to 
provide the necessary workspace 

• The target (abort mode) stack has R2, R3, R14 (Link register) and SPSR (the 
saved status captured in FIQ mode needed for the eventual return) added to the 
ABORT_stack 

• R0 and R1 are transferred with their context intact 
 

ARMv5 ARMv6 
FIQ2handler. FIQs are now re-enabled, with original R2, R3, R14, SPSR on stack. Includes code 
to stack any more registers required, process the interrupt and unstack extra registers. 
 
  STMIA   R13, {R0-R3} 
  MOV     R0, LR 
  MRS     R1, SPSR 
  ADD     R2, R13, #8 
  MRS     R3, CPSR 
  BIC     R3, R3, #0x1F 
  ORR     R3, R3, #0x1B   ; = Abort mode No.  
  MSR     CPSR_c, R3 
  STMFD   R13!, {R0,R1}    
  LDMIA   R2, {R0,R1} 
  STMFD   R13!, {R0,R1} 
  LDMDB   R2, {R0,R1} 
  BIC     R3, R3, #0x40   ; = F bit 
  MSR     CPSR_c, R3 
 

 
  SUB     R14, R14, #4 
  SRSFD   R13_abt! 
  CPSIE   f, #0x1B   ; = Abort mode 
  STMFD   R13!, {R2,R3} 
 
 

Exit code including the LDR/STR instructions needed to acknowledge the VIC 
   
  ADR     R2, #VICaddress 
  MRS     R3, CPSR 
  ORR     R3, R3, #0x40   ; = F bit 
  MSR     CPSR_c, R3 
  STR     R0, [R2,#AckFinished] 
  LDR     R14, [R13,#12]  ; Original SPSR value 
  MSR     SPSR_fsxc, R14 
  LDMFD   R13!, {R2,R3,R14} 
  ADD     R13, R13, #4 
  SUBS    PC, R14, #4 
 

 
  LDMFD   R13!, {R2,R3} 
  ADR     R14, #VICaddress 
  CPSID   f 
  STR     R0, [R14,#AckFinished] 
  RFEFD   R13! 
 

Approximate cycles: 35 Approximate cycles: 11 
 

Table 1a.  Efficient code handling in ARMv6 
 
 
The code illustrates a different stack mechanism for FIQ-mode and ABORT-mode: 

• FIQ-mode: "Empty ascending" stack; uses STMIA and LDMDB 



ARM White Paper  January 2002 

Page 11 of 15                                                           © ARM 2002 

• ABORT-mode: "Full descending" stack; uses STMDB and LDMIA 
o DB == decrement before 
o IA == increment after 

• “FD”is a stack-orientated suffix for the Full Descending stack model, supported in 
the ARM assembler. STMFD and LDMFD translate to STMDB and LDMIA. 

• ADR is a pseudo assembler instruction used to load an address 
 
In the ARMv5 case, it was necessary to save R2 and R3, as the registers were required 
for the algorithm. In the ARMv6 case they were stored for equivalence reasons. 
 
 

Entry code:  
add R2, R3, R14 and SPSR to the target (ABORT) stack 
        switch mode => ABORT 

exit code:  
recover R2 and R3 context 
       return from handler (pop values from the ABORT stack) 
   - "LR" => PC 
   - "SPSR" => CPSR 

 
Table 1b.  Entry/Exit code handling in ARMv6 

 
For ARMv5 the FIQs are disabled for some time at the start of the lower-priority FIQs. 
The worst-case interrupt latency for the FIQ1 interrupt occurs if a lower-priority FIQ2 
has just fetched its handler address, and is approximately: 
 

• 3 cycles for the pipeline refill after the LDR PC instruction fetches the handler 
address 

• + 24 cycles to get to and execute the MSR instruction that re-enables FIQs 
• + 3 cycles to re-enter the FIQ exception 
• + 5 cycles for the LDR PC instruction at FIQhandler 
• or about 35 cycles. 

 
For ARMv6, the worst-case interrupt latency for a FIQ1 now occurs if the FIQ1 occurs 
during a FIQ2’s interrupt entry sequence, just after it disables FIQs, and is 
approximately:  
 

• 3 cycles for the pipeline refill for the FIQ2’s exception entry sequence 
• + 5 cycles to get to and execute the CPSIE instruction that re-enables FIQs 
• + 3 cycles to re-enter the FIQ exception 
• or about 11 cycles. 
 

The underlying mechanism illustrated can be used from any privileged mode, to stack 
and swap state to a different privileged mode, then return from this mode using the stack 
values. 
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Data Handling 
Version 6 has introduced two features for mixed-endian support:  

E-bit 
A state bit (E-bit) is set and cleared under program control using the SETEND 
instruction. The E-bit defines which endian to load and store data. Figure 4 illustrates the 
functionality associated with the E-bit for a word load or store operation. 
 

 

Byte 3 Byte 2 Byte 1 Byte 0 Byte 0 Byte 1 Byte 2 Byte 3 

Byte 3 

Byte 2 

Byte 1 

Byte 0 

Data bytes in memory 

Incrementing address 
byte 0 => byte 3 

ARM 
register 

ARM 
register 

31 31 0 0 

CPSR E-bit = 1 CPSR E-bit = 0 
 

Figure 4. Endian support - Word Load/Store with E-bit 
 
This mechanism enables efficient dynamic data load/store for system designers who 
know they need to access data structures in the opposite endianness to their 
OS/environment. Note that the address of each data byte is fixed in memory. However, 
the byte lane in a register is different. 

Unaligned Data Support 
In ARMv5 (ARM state), an access will abort in all unaligned cases when the A-bit in 
CP15 register 1 is set, otherwise: 
• an unaligned word load (LDR) will rotate right by addr[1:0] x 8 bits 
• unaligned word stores (STR) will ignore addr[1:0] and treat them as zero 
• unaligned halfword loads and stores are UNPREDICTABLE 
• Dword (64-bit) loads and stores LDRD/STRD are implementation dependent as to 

whether they require Dword or word alignment to execute correctly. 
 
Version 6 introduces unaligned data support for 32-bit words and 16-bit halfwords, the 
behavior controlled by a new (U-bit) in CP15 register 1. The A-bit will still cause 
unaligned errors to abort in all cases; Dwords if not word aligned. When the U-bit is set 
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and the A-bit is clear, LDR, STR, LDRH and STRH support unaligned accesses in 
hardware. All other unaligned accesses will data abort and require handling in software. 

REV Instructions 
Three byte reverse instructions are available in both ARM and Thumb states. The byte 
reverse (REV) instructions can be used to improve byte-swap routines present in many 
code bases today typically replacing four instructions with a single instruction (Figure 5). 
 
New instructions (ARM and Thumb variants) 

• REV - byte reverse a word 
• REV16 - byte reverse packed (2 x) halfwords 
• REVSH - byte reverse + sign extend halfword 

 
 

 

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2 B1 B0 

B0 B1 B2 B3 B2 B3 B0 B1 S S B0 B1 

REVSH{<cond>} Rd, Rm REV16{<cond>} Rd, Rm REV{<cond>} Rd, Rm 

Rd Rd Rd 

Rm Rm Rm 
31       24       16          8         0 31       24       16          8         0 31       24       16          8         0 

 
Figure 5.  ARMv6 Byte Reverse Instructions 

Media Extensions 
The media extensions were announced during 2000, and will be implemented for the first 
time in ARMv6 designs. They include a set of Single Instruction Multiple Data (normally 
known as SIMD) instructions, as well as new multiplier and Sum-of-Absolute-
Differences support. The SIMD instructions use the GE-bits added to the programmer’s 
model. 
The new instructions support 8 and 16-bit SIMD arithmetic, including four 8-bit and two 
16-bit operations, parallel add and subtract, selection, packing and unpacking. 
 
Advanced multiplier options include dual 16-bit multiply-accumulate, and a new long 
multiply instruction, useful for cryptographic applications. Table 2 demonstrates the 
efficiency of the complex multiply in ARMv6 architectures. 
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ARMv5TE: 5 cycles in a single-cycle implementation 

 
SMULTT Real,Ra,Rb ;Real = Ra.real*Rb.real 
SMULBB Temp,Ra,Rb ;Temp = Ra.imag*Rb.imag 
SUB Real,Real,Temp ;Real = Ra.real*Rb.real - Ra.imag*Rb.imag 
SMULTB Imag,Ra,Rb ;Imag = Ra.real*Rb.imag 
SMLABT Imag,Ra,Rb ;Imag = Ra.real*Rb.imag + Ra.imag*Rb.real 
 

ARMv6: 2 cycles in a single-cycle implementation 

 
SMUSD Real,Ra,Rb ;Real = Ra.real*Rb.real - Ra.imag*Rb.imag 
SMUADX Imag,Ra,Rb ;Imag = Ra.real*Rb.imag + Ra.imag*Rb.real 
 

 
Table 2.  Example 16-bit Complex Multiply  

 
ARMv6 provides better support for the sum of absolute differences calculation, with the 
inclusion of the USAD8 (sum of differences) and USADA8 (sum of differences and 
accumulate) instructions. These are particularly useful for video encoding and motion 
estimation applications.  
 
Table 3 shows the relative performance of the sum of absolute differences. The 
comparison with version 5TE relates to a software implementation in ARM registers. 
This can also be accelerated with the MOVE coprocessor. 
 
 

Architecture Cycles/4 pixels 
ARMv5TE 18 cycles 

ARMv6 3 cycles 
 

Table 3.  Implementing Sum of Absolute Differences 
Architectural provision in ARMv6 yields a choice between hardware and software 
implementation, giving similar performance results. A single instruction in software, with 
the register usage overhead, or the MOVE coprocessor hardware option with dedicated 
resource, which leaves the ARM processor free for other tasks. 
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Summary 
The introduction of the ARMv6 architecture brings a new set of features and a 
performance leap that will meet the needs of ARM’s partners as they design next-
generation products across a range of target markets. 
 
ARMv6 consolidates the developments in ARMv5, and provides 100% backwards 
compatibility. It also adds significant enhancements for next-generation applications. 
New multimedia support provides 4x-processing improvements in some media 
applications. The new VMSA provides faster context switches enhancing performance of 
platform processors hosting complex operating systems.  Improved multiprocessor 
support eases development and enhances the performance of systems based on multiple 
ARM cores, or ARM plus DSP core configurations. 
 
ARM will be working with a growing number of partners during 2002 to ensure the 
successful introduction of the ARMv6 architecture. As well as ARMv6-compliant silicon 
product introduction, considerable effort will also be devoted to development support – 
examples are improved AMBA support used for on-chip connectivity, platform design 
support, code generation and debug tools, as well as operating system porting. 


