
ARM® Instruction Set
Quick Reference Card

Key to Tables {endianness} Can be BE (Big Endian) or LE (Little Endian).
{cond} Refer to Table Condition Field. Omit for unconditional execution. <a_mode2> Refer to Table Addressing Mode 2.
<Operand2> Refer to Table Flexible Operand 2. Shift and rotate are only available as part of Operand2. <a_mode2P> Refer to Table Addressing Mode 2 (Post-indexed only).
<fields> Refer to Table PSR fields. <a_mode3> Refer to Table Addressing Mode 3.
<PSR> Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register) <a_mode4L> Refer to Table Addressing Mode 4 (Block load or Stack pop).
{S} Updates condition flags if S present. <a_mode4S> Refer to Table Addressing Mode 4 (Block store or Stack push).
C*, V* Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later. <a_mode5> Refer to Table Addressing Mode 5.
Q Sticky flag. Always updates on overflow (no S option). Read and reset using MRS and MSR. <reglist> A comma-separated list of registers, enclosed in braces { and }.
GE Four Greater than or Equal flags. Always updated by parallel adds and subtracts. <reglist-PC> As <reglist>, must not include the PC.
x,y B meaning half-register [15:0], or T meaning [31:16]. <reglist+PC> As <reglist>, including the PC.
<immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. {!} Updates base register after data transfer if ! present.
{X} RsX is Rs rotated 16 bits if X present. Otherwise, RsX is Rs. +/- + or –. (+ may be omitted.)
<prefix> Refer to Table Prefixes for Parallel instructions § Refer to Table ARM architecture versions.
<p_mode> Refer to Table Processor Modes <iflags> Interrupt flags. One or more of a, i, f (abort, interrupt, fast interrupt).
R13m R13 for the processor mode specified by <p_mode> {R} Rounds result to nearest if R present, otherwise truncates result.

Operation § Assembler S updates Q Action
Arithmetic Add ADD{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2

with carry ADC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 + Carry
saturating 5E QADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + Rn)
double saturating 5E QDADD{cond} Rd, Rm, Rn Q Rd := SAT(Rm + SAT(Rn * 2))

Subtract SUB{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2
with carry SBC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2 – NOT(Carry)
reverse subtract RSB{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn
reverse subtract with carry RSC{cond}{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn – NOT(Carry)
saturating 5E QSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm – Rn)
double saturating 5E QDSUB{cond} Rd, Rm, Rn Q Rd := SAT(Rm – SAT(Rn * 2))

Multiply 2 MUL{cond}{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0]
and accumulate 2 MLA{cond}{S} Rd, Rm, Rs, Rn N Z C* Rd := ((Rm * Rs) + Rn)[31:0]
unsigned long M UMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs)
unsigned accumulate long M UMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs)
unsigned double accumulate long 6 UMAAL{cond} RdLo, RdHi, Rm, Rs RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)

Signed multiply long M SMULL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs)
and accumulate long M SMLAL{cond}{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs)
16 * 16 bit 5E SMULxy{cond} Rd, Rm, Rs Rd := Rm[x] * Rs[y]
32 * 16 bit 5E SMULWy{cond} Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]
16 * 16 bit and accumulate 5E SMLAxy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[x] * Rs[y]
32 * 16 bit and accumulate 5E SMLAWy{cond} Rd, Rm, Rs, Rn Q Rd := Rn + (Rm * Rs[y])[47:16]
16 * 16 bit and accumulate long 5E SMLALxy{cond} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

Dual signed multiply, add 6 SMUAD{X}{cond} Rd, Rm, Rs Q Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]
and accumulate 6 SMLAD{X}{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]
and accumulate long 6 SMLALD{X}{cond} RdHi, RdLo, Rm, Rs Q RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]

Dual signed multiply, subtract 6 SMUSD{X}{cond} Rd, Rm, Rs Q Rd := Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]
and accumulate 6 SMLSD{X}{cond} Rd, Rm, Rs, Rn Q Rd := Rn + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]
and accumulate long 6 SMLSLD{X}{cond} RdHi, RdLo, Rm, Rs Q RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]

Signed most significant word multiply 6 SMMUL{R}{cond} Rd, Rm, Rs Rd := (Rm * Rs)[63:32]
and accumulate 6 SMMLA{R}{cond} Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs)[63:32]
and subtract 6 SMMLS{R}{cond} Rd, Rm, Rs, Rn Rd := Rn – (Rm * Rs)[63:32]

Multiply with internal 40-bit accumulate XS MIA{cond} Ac, Rm, Rs Ac := Ac + Rm * Rs
packed halfword XS MIAPH{cond} Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]
halfword XS MIAxy{cond} Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Count leading zeroes 5 CLZ{cond} Rd, Rm Rd := number of leading zeroes in Rm



ARM Addressing Modes
Quick Reference Card

Operation § Assembler S updates Q GE Action
Parallel
arithmetic

Halfword-wise addition 6 <prefix>ADD16{cond} Rd, Rn, Rm GE Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0]
Halfword-wise subtraction 6 <prefix>SUB16{cond} Rd, Rn, Rm GE Rd[31:16] := Rn[31:16] – Rm[31:16], Rd[15:0] := Rn[15:0] – Rm[15:0]
Byte-wise addition 6 <prefix>ADD8{cond} Rd, Rn, Rm GE Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16],

Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]
Byte-wise subtraction 6 <prefix>SUB8{cond} Rd, Rn, Rm GE Rd[31:24] := Rn[31:24] – Rm[31:24], Rd[23:16] := Rn[23:16] – Rm[23:16],

Rd[15:8] := Rn[15:8] – Rm[15:8], Rd[7:0] := Rn[7:0] – Rm[7:0]
Halfword-wise exchange, add, subtract 6 <prefix>ADDSUBX{cond} Rd, Rn, Rm GE Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] – Rm[31:16]
Halfword-wise exchange, subtract, add 6 <prefix>SUBADDX{cond} Rd, Rn, Rm GE Rd[31:16] := Rn[31:16] – Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16]
Unsigned sum of absolute differences 6 USAD8{cond} Rd, Rm, Rs Rd := Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])

+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])
and accumulate 6 USADA8{cond} Rd, Rm, Rs, Rn Rd := Rn + Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])

+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])
Move Move MOV{cond}{S} Rd, <Operand2> N Z C Rd := Operand2

NOT MVN{cond}{S} Rd, <Operand2> N Z C Rd := 0xFFFFFFFF EOR Operand2
PSR to register 3 MRS{cond} Rd, <PSR> Rd := PSR
register to PSR 3 MSR{cond} <PSR>_<fields>, Rm PSR := Rm (selected bytes only)
immediate to PSR 3 MSR{cond} <PSR>_<fields>, #<immed_8r> PSR := immed_8r (selected bytes only)
40-bit accumulator to register XS MRA{cond} RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]
register to 40-bit accumulator XS MAR{cond} Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi

Copy 6 CPY{cond} Rd, <Operand2> Rd := Operand2
Logical Test TST{cond} Rn, <Operand2> N Z C Update CPSR flags on Rn AND Operand2

Test equivalence TEQ{cond} Rn, <Operand2> N Z C Update CPSR flags on Rn EOR Operand2
AND AND{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND Operand2
EOR EOR{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn EOR Operand2
ORR ORR{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR Operand2
Bit Clear BIC{cond}{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND NOT Operand2

Compare Compare CMP{cond} Rn, <Operand2> N Z C V Update CPSR flags on Rn – Operand2
negative CMN{cond} Rn, <Operand2> N Z C V Update CPSR flags on Rn + Operand2

Saturate Signed saturate word, right shift 6 SSAT{cond} Rd, #<sat>, Rm{, ASR <sh>} Q Rd := SignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-32.
left shift SSAT{cond} Rd, #<sat>, Rm{, LSL <sh>} Q Rd := SignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31.

Signed saturate two halfwords 6 SSAT16{cond} Rd, #<sat>, Rm Q Rd[31:16] := SignedSat(Rm[31:16], sat),
Rd[15:0] := SignedSat(Rm[15:0], sat). <sat> range 0-15.

Unsigned saturate word, right shift 6 USAT{cond} Rd, #<sat>, Rm{, ASR <sh>} Q Rd := UnsignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-32.
left shift USAT{cond} Rd, #<sat>, Rm{, LSL <sh>} Q Rd := UnsignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31.

Unsigned saturate two halfwords 6 USAT16{cond} Rd, #<sat>, Rm Q Rd[31:16] := UnsignedSat(Rm[31:16], sat),
Rd[15:0] := UnsignedSat(Rm[15:0], sat). <sat> range 0-15.



ARM Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Pack Pack halfword bottom + top 6 PKHBT{cond} Rd, Rn, Rm{, LSL #<sh>} Rd[15:0] := Rn[15:0], Rd[31:16] := (Rm LSL sh)[31:16]. sh 0-31.

Pack halfword top + bottom 6 PKHTB{cond} Rd, Rn, Rm{, ASR #<sh>} Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0]. sh 1-32.
Signed
extend

Halfword to word 6 SXTH{cond} Rd, Rm{, ROR #<sh>} Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
Two bytes to halfwords 6 SXTB16{cond} Rd, Rm{, ROR #<sh>} Rd[31:16] := SignExtend((Rm ROR (8 * sh))[23:16]),

Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Byte to word 6 SXTB{cond} Rd, Rm{, ROR #<sh>} Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Unsigned
extend

Halfword to word 6 UXTH{cond} Rd, Rm{, ROR #<sh>} Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
Two bytes to halfwords 6 UXTB16{cond} Rd, Rm{, ROR #<sh>} Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),

Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Byte to word 6 UXTB{cond} Rd, Rm{, ROR #<sh>} Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Signed
extend
with add

Halfword to word, add 6 SXTAH{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
Two bytes to halfwords, add 6 SXTAB16{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8 * sh))[23:16]),

Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Byte to word, add 6 SXTAB{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Unsigned
extend
with add

Halfword to word, add 6 UXTAH{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.
Two bytes to halfwords, add 6 UXTAB16{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:16] := Rn[31:16] + ZeroExtend((Rm ROR (8 * sh))[23:16]),

Rd[15:0] := Rn[15:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.
Byte to word, add 6 UXTAB{cond} Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Reverse
bytes

In word 6 REV{cond} Rd, Rm Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8],
Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24]

In both halfwords 6 REV16{cond} Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8],
Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24]

In low halfword, sign extend 6 REVSH{cond} Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8],
Rd[31:16] := Rm[7] * &FFFF

Select Select bytes 6 SEL{cond} Rd, Rn, Rm Rd[7:0] := Rn[7:0] if GE[0] = 1, else Rd[7:0] := Rm[7:0]
Bits[15:8], [23:16], [31:24] selected similarly by GE[1], GE[2], GE[3]

Branch Branch B{cond} label R15 := label label must be within ±32Mb
of current instruction.

with link BL{cond} label R14 := address of next instruction, R15 := label label must be within ±32Mb
of current instruction.

and exchange 4T,5 BX{cond} Rm R15 := Rm, Change to Thumb if Rm[0] is 1
with link and exchange (1) 5T BLX label R14 := address of next instruction, R15 := label, Change to Thumb Cannot be conditional.

label must be within ±32Mb
of current instruction.

with link and exchange (2) 5 BLX{cond} Rm R14 := address of next instruction, R15 := Rm[31:1]
Change to Thumb if Rm[0] is 1

and change to Java state 5J, 6 BXJ{cond} Rm Change to Java state
Processor
state
change

Change processor state 6 CPSID <iflags> {, #<p_mode>} Disable specified interrups, optional change mode. Cannot be conditional.
6 CPSIE <iflags> {, #<p_mode>} Enable specified interrups, optional change mode. Cannot be conditional.

Change processor mode 6 CPS #<p_mode> Cannot be conditional.
Set endianness 6 SETEND <endianness> Sets endianness for loads and saves.

<endianness> can be BE (Big Endian) or LE (Little Endian).
Cannot be conditional.

Store return state 6 SRS<a_mode4S> #<p_mode>{!} [R13m] := R14, [R13m + 4] := CPSR Cannot be conditional.
Return from exception 6 RFE<a_mode4L> Rn{!} PC := [Rn], CPSR := [Rn + 4] Cannot be conditional.
Breakpoint 5 BKPT <immed_16> Prefetch abort or enter debug state. Cannot be conditional.

Software
interrupt

Software interrupt SWI{cond} <immed_24> Software interrupt processor exception. 24-bit value encoded
in instruction.

No Op No operation 5 NOP None



ARM Addressing Modes
Quick Reference Card

Operation § Assembler Action Notes
Load Word LDR{cond} Rd, <a_mode2> Rd := [address] Rd must not be R15.

User mode privilege LDR{cond}T Rd, <a_mode2P> Rd must not be R15.
branch (§ 5T: and exchange) LDR{cond} R15, <a_mode2> R15 := [address][31:1]

(§ 5T: Change to Thumb if [address][0] is 1)
Byte LDR{cond}B Rd, <a_mode2> Rd := ZeroExtend[byte from address] Rd must not be R15.

User mode privilege LDR{cond}BT Rd, <a_mode2P> Rd must not be R15.
signed 4 LDR{cond}SB Rd, <a_mode3> Rd := SignExtend[byte from address] Rd must not be R15.

Halfword 4 LDR{cond}H Rd, <a_mode3> Rd := ZeroExtent[halfword from address] Rd must not be R15.
signed 4 LDR{cond}SH Rd, <a_mode3> Rd := SignExtend[halfword from address] Rd must not be R15.

Doubleword 5E* LDR{cond}D Rd, <a_mode3> Rd := [address], R(d+1) := [address + 4] Rd must be even, and not R14.
Load multiple Pop, or Block data load LDM{cond}<a_mode4L> Rn{!}, <reglist-PC> Load list of registers from [Rn]

return (and exchange) LDM{cond}<a_mode4L> Rn{!}, <reglist+PC> Load registers, R15 := [address][31:1]
(§ 5T: Change to Thumb if [address][0] is 1)

and restore CPSR LDM{cond}<a_mode4L> Rn{!}, <reglist+PC>^ Load registers, branch (§ 5T: and exchange), CPSR := SPSR Use from exception modes only.
User mode registers LDM{cond}<a_mode4L> Rn, <reglist-PC>^ Load list of User mode registers from [Rn] Use from privileged modes only.

Soft preload Memory system hint 5E* PLD <a_mode2> Memory may prepare to load from address Cannot be conditional.
Load exclusive Semaphore operation 6 LDREX{cond} Rd, [Rn] Rd := [Rn], tag address as exclusive access

Outstanding tag set if not shared address
Rd, Rn must not be R15.

Store Word STR{cond} Rd, <a_mode2> [address] := Rd
User mode privilege STR{cond}T Rd, <a_mode2P> [address] := Rd

Byte STR{cond}B Rd, <a_mode2> [address][7:0] := Rd[7:0]
User mode privilege STR{cond}BT Rd, <a_mode2P> [address][7:0] := Rd[7:0]

Halfword 4 STR{cond}H Rd, <a_mode3> [address][15:0] := Rd[15:0]
Doubleword 5E* STR{cond}D Rd, <a_mode3> [address] := Rd, [address + 4] := R(d+1) Rd must be even, and not R14.

Store multiple Push, or Block data store STM{cond}<a_mode4S> Rn{!}, <reglist> Store list of registers to [Rn]
User mode registers STM{cond}<a_mode4S> Rn{!}, <reglist>^ Store list of User mode registers to [Rn] Use from privileged modes only.

Store exclusive Semaphore operation 6 STREX{cond} Rd, Rm, [Rn] [Rn] := Rm if allowed,
Rd := 0 if successful, else 1

Rd, Rm, Rn must not be R15.

Swap Word 3 SWP{cond} Rd, Rm, [Rn] temp := [Rn], [Rn] := Rm, Rd := temp
Byte 3 SWP{cond}B Rd, Rm, [Rn] temp := ZeroExtend([Rn][7:0]),

[Rn][7:0] := Rm[7:0], Rd := temp



ARM Addressing Modes
Quick Reference Card

Addressing Mode 2 - Word and Unsigned Byte Data Transfer ARM architecture versions
Pre-indexed Immediate offset [Rn, #+/-<immed_12>]{!} n ARM architecture version n and above.

Zero offset [Rn] Equivalent to [Rn,#0] nT, nJ T or J variants of ARM architecture version n and above.
Register offset [Rn, +/-Rm]{!} M ARM architecture version 3M, and 4 and above, except xM variants.
Scaled register offset [Rn, +/-Rm, LSL #<shift>]{!} Allowed shifts 0-31 nE All E variants of ARM architecture version n and above.

[Rn, +/-Rm, LSR #<shift>]{!} Allowed shifts 1-32 nE* E variants of ARM architecture version n and above, except xP variants.
[Rn, +/-Rm, ASR #<shift>]{!} Allowed shifts 1-32 XS XScale coprocessor instruction
[Rn, +/-Rm, ROR #<shift>]{!} Allowed shifts 1-31
[Rn, +/-Rm, RRX]{!} Flexible Operand 2

Post-indexed Immediate offset [Rn], #+/-<immed_12> Immediate value #<immed_8r>
Register offset [Rn], +/-Rm Logical shift left immediate Rm, LSL #<shift> Allowed shifts 0-31
Scaled register offset [Rn], +/-Rm, LSL #<shift> Allowed shifts 0-31 Logical shift right immediate Rm, LSR #<shift> Allowed shifts 1-32

[Rn], +/-Rm, LSR #<shift> Allowed shifts 1-32 Arithmetic shift right immediate Rm, ASR #<shift> Allowed shifts 1-32
[Rn], +/-Rm, ASR #<shift> Allowed shifts 1-32 Rotate right immediate Rm, ROR #<shift> Allowed shifts 1-31
[Rn], +/-Rm, ROR #<shift> Allowed shifts 1-31 Register Rm
[Rn], +/-Rm, RRX Rotate right extended Rm, RRX

Logical shift left register Rm, LSL Rs
Addressing Mode 2 (Post-indexed only) Logical shift right register Rm, LSR Rs
Post-indexed Immediate offset [Rn], #+/-<immed_12> Arithmetic shift right register Rm, ASR Rs

Zero offset [Rn] Equivalent to [Rn],#0 Rotate right register Rm, ROR Rs
Register offset [Rn], +/-Rm
Scaled register offset [Rn], +/-Rm, LSL #<shift> Allowed shifts 0-31 PSR fields (use at least one suffix)

[Rn], +/-Rm, LSR #<shift> Allowed shifts 1-32 Suffix Meaning
[Rn], +/-Rm, ASR #<shift> Allowed shifts 1-32 c Control field mask byte PSR[7:0]
[Rn], +/-Rm, ROR #<shift> Allowed shifts 1-31 f Flags field mask byte PSR[31:24]
[Rn], +/-Rm, RRX s Status field mask byte PSR[23:16]

x Extension field mask byte PSR[15:8]
Addressing Mode 3 - Halfword, Signed Byte, and Doubleword Data Transfer
Pre-indexed Immediate offset [Rn, #+/-<immed_8>]{!} Condition Field

Zero offset [Rn] Equivalent to [Rn,#0] Mnemonic Description Description (VFP)
Register [Rn, +/-Rm]{!} EQ Equal Equal

Post-indexed Immediate offset [Rn], #+/-<immed_8> NE Not equal Not equal, or unordered
Register [Rn], +/-Rm CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered

CC / LO Carry Clear / Unsigned lower Less than
Addressing Mode 4 - Multiple Data Transfer MI Negative Less than

Block load Stack pop PL Positive or zero Greater than or equal, or unordered
IA Increment After FD Full Descending VS Overflow Unordered (at least one NaN operand)
IB Increment Before ED Empty Descending VC No overflow Not unordered
DA Decrement After FA Full Ascending HI Unsigned higher Greater than, or unordered
DB Decrement Before EA Empty Ascending LS Unsigned lower or same Less than or equal
Block store Stack push GE Signed greater than or equal Greater than or equal
IA Increment After EA Empty Ascending LT Signed less than Less than, or unordered
IB Increment Before FA Full Ascending GT Signed greater than Greater than
DA Decrement After ED Empty Descending LE Signed less than or equal Less than or equal, or unordered
DB Decrement Before FD Full Descending AL Always (normally omitted) Always (normally omitted)

Addressing Mode 5 - Coprocessor Data Transfer Processor Modes Prefixes for Parallel Instructions
Pre-indexed Immediate offset [Rn, #+/-<immed_8*4>]{!} 16 User S Signed arithmetic modulo 28 or 216, sets CPSR GE bits

Zero offset [Rn] Equivalent to [Rn,#0] 17 FIQ Fast Interrupt Q Signed saturating arithmetic
Post-indexed Immediate offset [Rn], #+/-<immed_8*4> 18 IRQ Interrupt SH Signed arithmetic, halving results
Unindexed No offset [Rn], {8-bit copro. option} 19 Supervisor U Unsigned arithmetic modulo 28 or 216, sets CPSR GE bits

23 Abort UQ Unsigned saturating arithmetic
27 Undefined UH Unsigned arithmetic, halving results
31 System



ARM Addressing Modes
Quick Reference Card

Coprocessor operations § Assembler Action Notes
Data operations 2 CDP{cond} <copr>, <op1>, CRd, CRn, CRm{, <op2>} Coprocessor dependent

Alternative data operations 5 CDP2 <copr>, <op1>, CRd, CRn, CRm{, <op2>} Coprocessor dependent Cannot be conditional.
Move to ARM register from coprocessor 2 MRC{cond} <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor dependent

Alternative move 5 MRC2 <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor dependent Cannot be conditional.
Two ARM register move 5E* MRRC{cond} <copr>, <op1>, Rd, Rn, CRm Coprocessor dependent
Alternative two ARM register move 6 MRRC2 <copr>, <op1>, Rd, Rn, CRm Coprocessor dependent Cannot be conditional.

Move to coproc from ARM reg 2 MCR{cond} <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor dependent
Alternative move 5 MCR2 <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor dependent Cannot be conditional.
Two ARM register move 5E* MCRR{cond} <copr>, <op1>, Rd, Rn, CRm Coprocessor dependent
Alternative two ARM register move 6 MCRR2 <copr>, <op1>, Rd, Rn, CRm Coprocessor dependent Cannot be conditional.

Load 2 LDC{cond} <copr>, CRd, <a_mode5> Coprocessor dependent
Alternative loads 5 LDC2 <copr>, CRd, <a_mode5> Coprocessor dependent Cannot be conditional.

Store 2 STC{cond} <copr>, CRd, <a_mode5> Coprocessor dependent
Alternative stores 5 STC2 <copr>, CRd, <a_mode5> Coprocessor dependent Cannot be conditional.

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. 
Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the 
copyright holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. 
However, all warranties implied or expressed, including but not limited to implied warranties of 
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be 
liable for any loss or damage arising from the use of any information in this reference card, or any error 
or omission in such information, or any incorrect use of the product.

Document Number
ARM QRC 0001H

Change Log
Issue Date By Change
A June 1995 BJH First Release
B Sept 1996 BJH Second Release
C Nov 1998 BJH Third Release
D Oct 1999 CKS Fourth Release
E Oct 2000 CKS Fifth Release
F Sept 2001 CKS Sixth Release
G Jan 2003 CKS Seventh Release
H Oct 2003 CKS Eighth Release


