
ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 1 of 17

ELF for the ARM® Architecture
Development systems Division

Compiler Tools Group

Document number: GENC-003538
Date of Issue: 1st December 2003
Author: Richard Earnshaw
Authorized by:

© Copyright ARM Limited 2003. All rights reserved.

Abstract
This document describes the processor-specific definitions for ELF for the Application Binary Interface (ABI) for
the ARM architecture.

Keywords
Object files, file formats, linking, EABI, ELF

Licence
1. Subject to the provisions of clause 2, ARM hereby grants to LICENSEE a perpetual, non-exclusive,

nontransferable, royalty free, worldwide licence to use and copy this ABI Specification solely for the purpose
of developing, having developed, manufacturing, having manufactured, offering to sell, selling, supplying or
otherwise distributing products which comply with this ABI Specification. All other rights are reserved to ARM
or its licensors.

2. THIS ABI SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES EXPRESS, IMPLIED OR
STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF SATISFACTORY QUALITY,
MERCHANTABILITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

Proprietary notice
ARM and Thumb are registered trademarks of ARM Limited. The ARM logo is a trademark of ARM Limited. All
other products or services mentioned herein may be trademarks of their respective owners.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 2 of 17

Contents

1 ABOUT THIS DOCUMENT 4

1.1 Change control 4
1.1.1 Current status and anticipated changes 4
1.1.2 Change history 4

1.2 References 4

1.3 Terms and abbreviations 5

1.4 About the licence to use this specification 5

1.5 Acknowledgements 5

2 SCOPE 6

3 INTRODUCTION 7

3.1 Platform Standards 7

4 OBJECT FILES 8

4.1 Introduction 8

4.2 ELF Header 8
4.2.1 ELF Identification 9

4.3 Sections 9
4.3.1 Special Section Indexes 9
4.3.2 Section Types 9
4.3.3 Section Attribute Flags 9
4.3.4 Special Sections 9
4.3.5 Section Alignment 10

4.4 String Table 10

4.5 Symbol Table 10
4.5.1 Weak Symbols 10

4.5.1.1 Weak References 10
4.5.1.2 Weak Definitions 11

4.5.2 Symbol Types 11
4.5.3 Symbol Values 11
4.5.4 Symbol names 11
4.5.5 Sub-class and super-class symbols [optional] 12
4.5.6 Mapping symbols 12

4.5.6.1 Section-relative mapping symbols 12
4.5.6.2 Absolute mapping symbols 13

4.6 Relocation 13

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 3 of 17

4.6.1 Relocation codes 13
4.6.1.1 Mandatory relocation types 13
4.6.1.2 Platform specific relocation types 16
4.6.1.3 Private relocation types 16
4.6.1.4 Unallocated relocation types 16

4.6.2 Idempotency 16

5 PROGRAM LOADING AND DYNAMIC LINKING 17

5.1 Introduction 17

5.2 Program Header 17

5.3 Program Loading 17

5.4 Dynamic Linking 17

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 4 of 17

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes
This document supersedes ARM ELF, Document Number SWS ESPC 0003 B-02.

This DRAFT specification can be changed or updated by ARM without notice. Issue and version number will
change on republication. The material contained herein is believed to be accurate, but is known to be incomplete.
Anticipated changes include:

! Typographical corrections.

! Clarifications.
! Outstanding defect reports.

! Addition of detail and further relocation types to §4.6, Relocation.

! Completion and correction of sections flagged by yellow highlight.
! Completion of skeleton §5, Program Loading and Dynamic Linking.

1.1.2 Change history
Issue Date By Change

0.2 31st October 2003 Lee Smith First public release.

0.3 1st December 2003 Richard Earnshaw Second public release.

1.2 References
This document refers to, or is referred to by, the following documents.

Ref Reference Title

AAELF ELF for the ARM Architecture (This document).

AAPCS Procedure Call Standard for the ARM Architecture.

BSABI ABI for the ARM Architecture (Base Standard)

EHABI Exception Handling ABI for the ARM Architecture

SCO-ELF http://www.sco.com/developers/g
abi/2001-04-24/contents.html

System V Application Binary Interface - DRAFT - 24 April 2001

http://www.sco.com/developers/gabi/2001-04-24/contents.html
http://www.sco.com/developers/gabi/2001-04-24/contents.html

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 5 of 17

1.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

ABI Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the ARM Architecture.

2. A particular aspect of the specifications to which independently produced relocatable
files must conform in order to be statically linkable and executable. For example, the
C++ ABI for the ARM Architecture, the Run-time ABI for the ARM Architecture, the C
Library ABI for the ARM Architecture.

AEABI EABI (see below) for the ARM Architecture, this [E]ABI.

ARM-based … based on the ARM architecture …

EABI An ABI suited to the needs of embedded, and deeply embedded (sometimes called free
standing), applications.

ELF Executable and Linking Format

OS Operating System

1.4 About the licence to use this specification
Use of these ABI for the ARM Architecture specifications published by ARM is governed by the simple licence
agreement shown on the cover page of this document, and on the cover page of each major component
document. Without formalities or payment, you are licensed to use any IP rights ARM might hold in these ABI
specifications for the purpose of producing products that comply with these ABI specifications.

Because these specifications may be updated by ARM without notice, we prefer that these specifications should
not be copied, but that third parties should refer directly to them, in the same way that we refer directly to the
specifications underpinning this ABI, such as the specifications of ELF, DWARF, and the generic C++ ABI.

1.5 Acknowledgements
This specification could not have been developed without contributions from, and the active support of, the
following organizations. In alphabetical order: ARM, Intel, Metrowerks, Montavista, Nexus Electronics,
PalmSource, Symbian, and Wind River.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 6 of 17

2 SCOPE
This specification provides the processor-specific definitions required by ELF [SCO-ELF] for ARM based systems.

The ELF specification is part of the larger System V ABI specification where it forms chapters 4 and 5. However,
the specification can be used in isolation as a generic object and executable format.

Sections 4 and 5 of this document are structured to correspond to chapters 4 and 5 of the ELF specification.
Specifically:

! Section 4 covers object files and relocations

! Section 5 covers program loading and dynamic linking.

There are several drafts of the ELF specification on the SCO web site. This specification is based on the April
2001 draft, which was the most recent stable draft at the time this specification was developed.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 7 of 17

3 INTRODUCTION
This section is a place holder for additional material…

3.1 Platform Standards

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 8 of 17

4 OBJECT FILES

4.1 Introduction

4.2 ELF Header
The ELF header provides a number of fields that assist in interpretation of the file. Most of these are specified in
the base standard. The following fields have ARM-specific meanings.

e_type

There are currently no ARM-specific object file types. All values between ET_LOPROC and ET_HIPROC are
reserved to ARM.

e_machine

An object file conforming to this specification must have the value EM_ARM (40, 0x28).

e_entry

The base ELF specification requires this field to be non-zero if an application has an entry point. Some
applications may require an entry point of zero (for example, via the reset vector); a platform standard may specify
that an executable image always has an entry point, in which case e_entry always specifies the entry point, even if
zero.

e_flags

The processor-specific flags are shown in Table 4-1, ARM-specific e_flags. Unallocated bits, and bits allocated in
previous versions of this specification, are reserved to ARM.

Table 4-1, ARM-specific e_flags

Value Meaning

EF_ARM_EABIMASK
(0xFF000000)

(current version is 0x04000000)

This masks an 8-bit version number, the version of the ABI to which this
ELF file conforms. This ABI is version 4. A value of 0 denotes unknown
conformance.

EF_ARM_BE8
(0x00800000)

The ELF file contains BE-8 code, suitable for execution on an ARM
Architecture v6 processor. This flag will normally only be set on an
Executable file.

EF_ARM_LE8
(0x00400000)

The ELF file contains LE-8 code, suitable for execution on an ARM
Architecture v6 processor. This flag will normally only be set on an
Executable file, and only when the ELF file is itself in big-endian format
(e_ident[EI_DATA]=ELFDATA2MSB).

XXX More information from V6BE.txt

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 9 of 17

4.2.1 ELF Identification
The 16-byte ELF identification (e_ident) provides information on how to interpret the file itself. The following
values shall be used on ARM systems

EI_CLASS

An ARM ELF file shall contain ELFCLASS32 objects.

EI_DATA

This field may be either ELFDATA2LSB or ELFDATA2MSB. The choice will be governed by the default data order
in the execution environment. On ARM Architecture v6 it is possible to execute programs that are in the “opposite
endianness”; objects with this requirement will be marked with either EF_ARM_BE8 or EF_ARM_LE8 in the
e_flags field.

EI_OSABI

This field shall be zero unless the file uses objects that have flags which have OS-specific meanings (for example,
it makes use of a section index in the range SHN_LOOS through SHN_HIOS). There are currently no processor-
specific values for this field and all such values are reserved to ARM.

4.3 Sections

4.3.1 Special Section Indexes
There are no processor-specific special section indexes defined. All processor-specific values are reserved to
ARM.

4.3.2 Section Types
The defined processor-specific section types are listed in Table 4-2, Processor specific section types. All other
processor-specific values are reserved to ARM.

Table 4-2, Processor specific section types

Name Value Comment

SHT_ARM_EXIDX 0x70000001 Exception Index table

Pointers in sections of types SHT_INIT_ARRAY, SHT_PREINIT_ARRAY and SHT_FINI_ARRAY shall be
expressed relative to the address of the pointer.

SHT_ARM_EXIDX marks a section that contains index information for exception unwinding. See EHABI for
details.

4.3.3 Section Attribute Flags
There are no processor-specific section attribute flags defined. All processor-specific values are reserved to ARM.

4.3.4 Special Sections
Table 4-3, ARM special sections lists the special sections that are defined.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 10 of 17

Table 4-3, ARM special sections

Name Type Attributes

.ARM.exidx SHT_ARM_EXIDX SHF_ALLOC + SHF_LINK_ORDER

.ARM.extab SHT_PROGBITS SHF_ALLOC

.ARM.exidx names a section that contains index entries for section unwinding. See EHABI for details.

.ARM.extab names a section that contains exception unwinding information. See EHABI for details.

Additional special sections may be required by some platforms standards.

4.3.5 Section Alignment
There is no minimum alignment required for a section. However, sections containing thumb code must be at least
16-bit aligned and sections containing ARM code must be at least 32-bit aligned.

Platform standards may impose a limit on the alignment that they can guarantee to provide (normally the page
size).

4.4 String Table
There a no processor-specific extensions to the string table.

4.5 Symbol Table
There are no processor-specific symbol types or symbol bindings. All processor-specific values are reserved to
ARM.

4.5.1 Weak Symbols
There are two forms of weak symbol:

! A weak reference — This is denoted by st_shndx=SHN_UNDEF, ELF32_ST_BIND()=STB_WEAK.

! A weak definition — This is denoted by st_shndx!=SHN_UNDEF, ELF32_ST_BIND()=STB_WEAK.

4.5.1.1 Weak References
Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain
unsatisfied.

During linking, the value of an undefined weak reference is:

! Zero if the relocation type is absolute

! The address of the place if the relocation type is pc-relative
! The address of nominal base address if the relocation type is base-relative.

See §4.6 Relocation for further details.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 11 of 17

4.5.1.2 Weak Definitions
A weak definition does not change the rules by which object files are selected from libraries. However, if a link set
contains both a weak definition and a non-weak definition, the non-weak defintion will always be used.

4.5.2 Symbol Types
All code symbols exported from an object file (symbols with binding STB_GLOBAL) shall have type STT_FUNC.

All extern data objects shall have type STT_OBJECT. No STB_GLOBAL data symbol shall have type STT_FUNC.

The type of an undefined symbol shall be STT_NOTYPE or the type of its expected definition.

The type of any other symbol defined in an executable section can be STT_NOTYPE. The linker is only required to
provide interworking support for symbols of type STT_FUNC (interworking for untyped symbols must be encoded
directly in the object file).

4.5.3 Symbol Values
In addition to the normal rules for symbol values the following rules shall also apply to symbols of type STT_FUNC:

! If the symbol addresses an ARM instruction, its value is the address of the instruction (in a relocatable object,
the offset of the instruction from the start of the section containing it).

! If the symbol addresses a Thumb instruction, its value is the address of the instruction with bit zero set (in a
relocatable object, the section offset with bit zero set).

! For the purposes of relocation the value used shall be the address of the instruction (st_value & ~1).

[aside — this allows a linker to distinguish ARM and Thumb code symbols without having to refer to the map. An
ARM symbol will always have an even value, while a Thumb symbol will always have an odd value. However, a
linker should strip the discriminating bit from the value before using it for relocation.]

4.5.4 Symbol names
A symbol that names a C or assembly language entity should have the name of that entity. For example, a C
function called calculate generates a symbol called calculate (not _calculate).

All symbol names containing a dollar character (‘$’) are reserved to ARM.

Symbol names are case sensitive and are matched exactly by linkers.

Multiple conventions exist for the names of compiler temporary symbols (for example, ARMCC uses Lxxx.yyy,
while GNU uses .Lxxx). More generally, any symbol with binding STB_LOCAL and type STT_NOTYPE may be
removed from an object and replaced with an offset from another symbol in the same section under the following
conditions:

! The replacement symbol is not of type STT_FUNC.
! All relocations referring to the symbol can accommodate the adjustment in the addend field (it is permitted to

convert a REL type relocation to a RELA type relocation).

! The symbol is not described by the debug information.
! The symbol is not a mapping symbol.

! The resulting object, or image, is not required to preserve accurate symbol information to permit
decompilation or other post-linking optimization techniques.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 12 of 17

No tool is required to perform the above transformations, an object consumer must be prepared to do this itself if it
might find the additional symbols confusing.

4.5.5 Sub-class and super-class symbols [optional]
A symbol $Sub$$name is the sub-class version of name. A symbol $Super$$name is the super-class version of
name. In the presence of a defintion of both name and $Sub$$name:

! A reference to name resovles to the definition of $Sub$$name.
! A reference to $Super$$name resolves to the definition of name.

It is an error to refer to $Sub$$name, or to define $Super$$name, or to use $Sub$$… or $Super$$… recursively.

A platform standard may mandate support of sub- and super-class symbols.

There are outstanding defects for sub- and super-class symbols DE-316140.

4.5.6 Mapping symbols
A section of an ELF file can contain a mixture of ARM code, Thumb code and data.

There are inline transitions between code and data at literal pool boundaries. There can also be inline transitions
between ARM code and Thumb code, for example in ARM-Thumb inter-working veneers.

Linkers, and potentially other tools, need to map images correctly (for example, to support byte swapping to
produce a BE-8 image from a BE-32 object file). To support this, a number of symbols, termed mapping symbols
appear in the symbol table to denote the start of a sequence of bytes of the appropriate type. All mapping
symbols have type STT_NOTYPE and binding STB_LOCAL.

The mapping symbols are defined in Table 4-4, Mapping symbols. It is an error for a relocation to reference a
mapping symbol. Two forms of mapping symbol are supported:

! a short form, that uses a dollar character and a single letter denoting the class. This form can be used when
an object producer creates mapping symbols automatically, and minimizes symbol table space

! a longer form, where the short form is extended with a period and then any sequence of characters that are
legal for a symbol. This form can be used when assembler files have to be annotated manually and the
assembler does not support multiple definitions of symbols.

Table 4-4, Mapping symbols

Name Meaning

$a
$a.<any…>

Start of a sequence of ARM instructions

$d
$d.<any…>

Start of a sequence of data items (for example, a literal pool)

$t
$t.<any…>

Start of a sequence of Thumb instructions

4.5.6.1 Section-relative mapping symbols
Mapping symbols defined in a section define a sequence of half-open address intervals that cover the address
range of the section. Each interval starts at the address defined by the mapping symbol, and continues up to, but
not including, the address defined by the next (in address order) mapping symbol or the end of the section. A

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 13 of 17

section must have a mapping symbol defined at the beginning of the section; however, if the section contains only
data then the mapping symbol may be omitted.

4.5.6.2 Absolute mapping symbols
Mapping symbols are no-longer required for the absolute section. The equivalent information is now conveyed by
the type of the absolute symbol.

4.6 Relocation
Relocation information is used by linkers in order to bind symbols and addresses that could not be determined
when the initial object was generated.

4.6.1 Relocation codes
The relocation codes for ARM are divided into four categories:

! Mandatory relocations that must be supported by all static linkers

! Platform-specific relocations that are required for specific virtual platforms
! Private relocations that are guaranteed never to be allocated in future revisions of this specification, but which

must never be used in portable object files.

! Unallocated relocations that are reserved for use in future revisions of this specification.

4.6.1.1 Mandatory relocation types
Table 4-5, Mandatory relocation types lists the relocation types that must be supported by all linkers. The table
shows:

! The type which is stored in the ELF32_R_TYPE component of the r_info field.
! The name of the relocation type.

! The type of place that can be relocated by this relocation. For instructions this is sub-divided into ARM and
Thumb instructions and then the type of underlying instruction is further described. From this information it is
possible to determine:

- The initial addend, for a REL type relocation

- The appropriate limits for overflow checking
- Any further modifications that must be necessary when writing out the relocated value.

! The size and alignment of the place being relocated (in bytes) and the type of overflow checking that must be
performed: Signed, Unsigned or None.

! The computation that must be performed in order to determine the relocation result. The following
nomenclature is used

- S denotes the value of symbol referenced in ELF32_R_SYM component of the r_info field.
- A denotes the initial addend. For a RELA type relocation the value is used unmodified. For a REL type

relocation the value must be extracted from the place in a manner that is determined by the type of the
place.

- P denotes the address of the place being relocated. It is the sum of the r_offset field and the base
address of the section being relocated (note that all relocations involving P are of the form S – P, where
the symbol referenced is in the same consolidated output section as P, so it is not necessary to know the
absolute address of the section being relocated).

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 14 of 17

- B is the nominal base address used for accessing objects in the read-write data areas.

- E is the nominal base address used for accessing objects in the executable and read-only areas.

The precise definition of a nominal base address is platform defined, but it must be possible for the application to
retrieve the value at run time by one of the following methods:

! A pre-determined value
! A value in a known register

! A suitable symbol

! A library call

The platform documentation must describe the appropriate model for each of B and E (they need not be the
same).

Table 4-5, Mandatory relocation types

Type Name Place
Size

Alignment
Overflow

Computation

0 R_ARM_NONE None 0/1/n No relocation. Encodes dependencies
between section

1 R_ARM_PC24 ARM B/BL/BLX 4/4/s S – P + A

2 R_ARM_ABS32 Data 4/1/n S + A

3 R_ARM_REL32 Data 4/1/n S – P + A

4 R_ARM_PC13 ARM
LDR r, [pc,…]

4/4/s S – P + A

5 R_ARM_ABS16 Data 2/1/u S + A

6 R_ARM_ABS12 ARM LDR/STR 4/4/s S + A

7 R_ARM_THM_ABS5 Thumb
LDR/STR

2/2/u S + A

8 R_ARM_ABS8 Data 1/1/u S + A

9 R_ARM_SBREL32 Data 4/1/n S – B + A

10 R_ARM_THM_PC22 Thumb BL/BLX
pair

4/2/s S – P + A

11 R_ARM_THM_PC8 Thumb
LDR r, [pc,…]

2/2/u S – P + A

12 Reserved

13 R_ARM_SWI24 ARM SWI 4/4/u S + A

14 R_ARM_THM_SWI8 Thumb SWI 2/2/u S + A

15 R_ARM_XPC25 Obsolete. Use R_ARM_PC24

16 R_ARM_THM_XPC22 Obsolete. Use R_ARM_THM_PC22

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 15 of 17

Type Name Place
Size

Alignment
Overflow

Computation

32 R_ARM_ALU_PCREL_7_0 ARM ADD/SUB 4/4/n (S – P + A) & 0x000000FF

33 R_ARM_ALU_PCREL_15_8 ARM ADD/SUB 4/4/n (S – P + A) & 0x0000FF00

34 R_ARM_ALU_PCREL_23_15 ARM ADD/SUB 4/4/n (S – P + A) & 0x00FF0000

35 R_ARM_LDR_SBREL_11_0 ARM LDR/STR 4/4/n (S – B + A) & 0x00000FFF

36 R_ARM_ALU_SBREL_19_12 ARM ADD/SUB 4/4/n (S – B + A) & 0x000FF000

37 R_ARM_ALU_SBREL_27_20 ARM ADD/SUB 4/4/n (S – B + A) & 0x0FF00000

38 R_ARM_RELABS32 Data 4/1/n S + A or S – P + A

39 R_ARM_ROSEGREL32 Data 4/1/n S – E + A

40 R_ARM_V4BX ARM BX r 4/4/n None. Used to mark BX instructions in
ARMv4T code.

41 R_ARM_STKCHK ARM ?? 4/4/s Reserved for stack-limit checking

42 R_ARM_THM_STKCHK Thumb ?? 4/2/s Reserved for stack-limit checking

43-52 Reserved for Thumb-2

R_ARM_NONE records that the section containing the place to be relocated depends on the section defining the
symbol mentioned in the relocation directive in a way otherwise invisible to the static linker. The effect is to
prevent removal of sections that might otherwise appear to be unused.

R_ARM_PC24 is used to relocate an ARM B or BL instruction (and on ARMv5 an ARM BLX instruction). Bits 0-23
encode a signed offset, in units of 4-byte instructions (thus 24 bits encode a branch offset of +/- 225 bytes). For a
BLX instruction bit 24 additionally encodes the appropriate half-word address of the destination and there is an
implicit transition to Thumb state. A static linker may convert a BL to a BLX instruction (or vice-versa) if generating
an image for ARMv5 or later. If it is unable to do this (as is the case for B, or BL<cond> or on ARMv4T) then it
must generate a suitable sequence of instructions that will perform the transition to the target. The instruction
sequence may make use of the intra-procedure scratch register (IP) and does not need to preserve its value.
The relocation must then be recalculated using the address of the sequence instead of S. Compensation for the
PC bias (8 bytes) must be factored into the relocation expression by the object producer.

R_ARM_PC13 is used to relocate an ARM LDR instruction where the base register for the address is PC. Bits 0-11
encode an unsigned offset in bytes and bit 23 encodes an inverted sign bit from a 13-bit sign-magnitude
representation. Compensation for the PC bias (8 bytes) must be factored into the relocation expression by the
object producer.

R_ARM_THM_PC22 is used to relocate Thumb BL (and on ARMv5 Thumb BLX) instructions. It is thumb equivalent
of R_ARM_PC24 and the same rules on conversion apply. Bits 0-10 of the first half-word encode the most
significant bits of the branch offset, bits 0-10 of the second half-word encode the least significant bits and the
offset is in units of half-words. Thus 22 bits encode a branch offset of +/- 222 bytes. Compensation for the PC bias
(4 bytes) must be factored into the relocation expression by the object producer.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 16 of 17

R_ARM_V4BX records the location of an ARMv4t BX instruction. This enables a static linker to generate ARMv4
compatible images from ARMv4t objects that contain only ARM code by converting the instruction to MOV PC, r,
where r is the register used in the BX instruction. See [AAPCS] for details. The symbol is unused and may even
be unnamed.

4.6.1.2 Platform specific relocation types
Add these (particularly SVr4 types).

4.6.1.3 Private relocation types
Relocation types 112-127 are reserved for private experiments. These values will never be allocated by future
revisions of this specification. They must not be used in portable object files.

4.6.1.4 Unallocated relocation types
All unallocated relocation types are reserved for use by future revisions of this specification.

4.6.2 Idempotency
All RELA type relocations are idempotent. They may be reapplied to the place and the result will be the same.
This allows a static linker to preserve full relocation information for an image by converting all REL type
relocations into RELA type relocations.

Note A REL type relocation can never be idempotent because the act of applying the relocation destroys the
original addend.

ELF for the ARM Architecture

GENC-003538 v0.3 DRAFT Page 17 of 17

5 PROGRAM LOADING AND DYNAMIC LINKING
This section will be added in a future draft.

5.1 Introduction

5.2 Program Header

5.3 Program Loading

5.4 Dynamic Linking

	ABOUT THIS DOCUMENT
	Change control
	Current status and anticipated changes
	Change history

	References
	Terms and abbreviations
	About the licence to use this specification
	Acknowledgements

	SCOPE
	INTRODUCTION
	Platform Standards

	OBJECT FILES
	Introduction
	ELF Header
	ELF Identification

	Sections
	Special Section Indexes
	Section Types
	Section Attribute Flags
	Special Sections
	Section Alignment

	String Table
	Symbol Table
	Weak Symbols
	Weak References
	Weak Definitions

	Symbol Types
	Symbol Values
	Symbol names
	Sub-class and super-class symbols [optional]
	Mapping symbols
	Section-relative mapping symbols
	Absolute mapping symbols

	Relocation
	Relocation codes
	Mandatory relocation types
	Platform specific relocation types
	Private relocation types
	Unallocated relocation types

	Idempotency

	PROGRAM LOADING AND DYNAMIC LINKING
	Introduction
	Program Header
	Program Loading
	Dynamic Linking

